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I. 3He AS A PROTOTYPICAL FERMI LIQUID AND “EXOTIC SUPERCONDUCTOR”

Helium does not solidify at any temperature at atmospheric pressure. It’s small mass and large
deBroglie wavelength render it a ’quantum fluid’. The weak interactions between He atoms, along
with the large zero-point motion of the atoms, allow for condensation into a fluid state at cryogenic
temperatures, but not a solid.
4He is a well-know Bosonic atom (2 protons, 2 neutrons and 2 electrons, all spin-1/2 particles that ’pair
up’) that undergoes a superfluid transition at about 2.2 K in to a Bose-Einstein-condensate-like state.
It’s small mass and lack of chemistry makes it ideal for showing Bosonic quantum fluid properties.
3He on the other hand has one un-paired neutron in the nucleus and a net spin-1/2 nucleus, making
it a Fermion. It is even lighter than 4He, making for even more interesting quantum effects. At
low temperatures it condenses into a fluid which shows prototypical Landau Fermi Liquid properties.
Eventually, at about 2.8 mK (three orders of magnitude lower than the superfluid transition temperature
of 4He), it makes a transition in to a superfluid state that resembles BCS superconductivity, although
without the electrical charge.
Our objective is to review the Fermi liquid properties of 3He and then discuss the superfluid state,
making contact with BCS theory whenever possible. This superfluid state is similar in many ways to the
properties of exotic superconductors, including many heavy Fermion materials.

II. THE LANDAU FERMI LIQUID THEORY OF 3He

The interatomic potential between He atoms is approximated by the Lennard-Jones (or 6-12) poten-
tial: V (r) = V0[(

σ
r )

12 − (σr )
6], with σ = 2.6 Å and V0 ≈ 1 meV ≈ 10 K. One important feature of this

potential is the extremely strong repulsion between He atoms at short distances. This is much stronger
than the mutual repulsion between electrons in a metal, and will play an important role in superfluidity
in 3He.
3He condenses into a fluid at T = 3.197 K at atmospheric pressure. At low temperatures (3 to
100 mK) 3He is a degenerate Fermi liquid with a well-defined Fermi surface. The Fermi energy
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is equal to just 0.5 meV, as opposed to about 10 eV in good metals. The corre-

sponding Fermi temperature is just 4.9 K, and the Fermi wavenumber is 0.78 Å−1.

The heat capacity above Tc is observed to be linear in temperature, just like the electronic heat

capacity in metals, but with a slope 3 times bigger than theory, C =
π2k2
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The magnetic properties are dominated by the un-paired nuclear spin, which has a moment µN =
5.4 × 10−4µB , where µB is the Bohr magneton. There is a temperature-independent paramagnetic
susceptibility at temperatures below 1 K, analogous to Pauli paramagnetism for the electron gas in a
metal.

Landau developed a version of Fermi liquid theory in 1956 to explain the low-temperature proper-
ties of 3He. He started with the non-interacting gas and treated the interactions as a perturbation.
In the non-interacting case, he treated all particles as de-localized, and used momentum eigenstates,

ψ ∼ 1√
V
e−ik⃗·r⃗χ similar to BCS. Here V is the volume of the fluid and χ is the spinor wavefunction. After

turning on the interactions it is assumed that there is a 1:1 correspondence between the states of the
system, and that the interactions simply change the energies of these states. By adiabatic continuation,
the wavefunctions smoothly evolve as the interactions are turned on. The Hamiltonian has the form,

H =
∑N

i=1 −
ℏ2

2m ▽2
i +

λ
2

∑
i ̸=j V (r⃗i − r⃗j). Here λ is tuned from 0 (no interactions) to 1 (full interactions)

adiabatically. It is assumed that the atoms interact with each other purely by means of two-body
interactions.
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Because 3He is an isotropic and degenerate Fermi fluid, the interactions between particles can be
written in terms of a small number of parameters as follows. Write the interaction energy as,

Eint = f1(k⃗, k⃗
′) + f2(k⃗, k⃗

′)S⃗ · S⃗′, making use of the isotropy of the fluid. The first term depends only on
the momentum of the atoms, which is typically very close to kF . The second term is the spin-dependent
part, which depends on the vector dot product of the two spins, the simplest form of interaction given

the spherical symmetry of the fluid. Focus on two atoms on the Fermi sphere, described by (k⃗, S⃗) and

(k⃗′, S⃗′). Due to the symmetry of the fluid, their interaction energy can only depend on k⃗ · k⃗′ = k2F cos(Θ)

and S⃗ · S⃗′. Using the angle Θ between the directions k⃗ and k⃗′, Landau defined his dimensionless param-
eters F and G as follows,
F (Θ) = N(EF )f1(Θ) =

∑∞
n=0 FnPn(cos(Θ)) = F0 + F1 cosΘ + ..., and

G(Θ) = N(EF )f2(Θ) =
∑∞

n=0GnPn(cos(Θ)) = G0 +G1 cosΘ + ...,
where N(EF ) is the density of states at the Fermi energy, and one has expanded in a set of Legendre
polynomials over the spherical Fermi surface. It turns out that most of the normal state physical prop-
erties can be understood in terms of just F0, F1 and G0. For example, it is found that the mass of
the quasiparticle is enhanced as m∗

3 = m3(1 + 1
3F1), which turns out to be about a factor of 3. This

explains the enhanced slope of the heat capacity vs. temperature. It is also found that the magnetic

susceptibility is enhanced as χ =
m∗

3

m3

χideal

1+ 1
4G0

because G0 < 0.

The Landau parameters for 3He as a function of pressure are,

Pressure (bar)
0 15 30

F0 10 46 82
F1 6 11 14.6
G0 −2.69 −2.92 −2.95

Note that the solid phase sets in just above a pressure of 30 bar. As the pressure increases, the
momentum-dependent F0 and F1 terms grow because the atoms are being forced to interact with each
other more strongly. However, note that the spin-dependent terms are very weakly dependent on pressure.
The spin is buried in the nucleus and is less sensitive to what is going on ’outside’.

III. SUPERFLUID PROPERTIES OF 3He

3He shows a heat capacity that is linear in temperature above the superfluid transition. At the
transition there is a discontinuity in the heat capacity (see the class web site), similar to that seen in a
BCS superconductor.
3He has three distinct superfluid phases, A, B and A1. In zero magnetic field it will condense in to
either the A or B phase, depending on the pressure. With increasing field the B phase is reduced and
the A phase takes over. The B phase supports persistent angular momentum states while the A phase
does not. In non-zero field there are two second order phase transitions as the system goes from the
normal phase to the A1 phase to the A phase. The transition from A to B phase is first order, with
latent heat and hysteresis.

The short-range Lennard-Jones (1/r12) repulsion is stronger than that in electron-electron interactions
in metals, such that the spin-singlet s-wave pairing channel is suppressed. The ℓ = 1 angular momentum
pairing state with spin-triplet pairing is favored. A non-zero angular momentum for the paired atoms
helps to keep them away from each other, thus avoiding the short-range repulsion. The large param-
agnetic susceptibility of the 3He atoms favors the S = 1 pairing. For the pair, the angular momentum
vector and the spin vector can, in general, point in different directions, making for many possible pairing
states.

IV. PAIRING IN 3He

Leggett (1975) found that the pairing interaction between 3He atoms can be written as,

Vk,k′ ≈ 1
N(EF )

G0

1+ 1
4G0

S⃗ · S⃗′. (This expression is accurate for |⃗k− k⃗′| << kF ) We saw above that G0 ≈ −3,

hence the pairing interaction favors ferromagnetic alignment of the atom nuclear spins. Note that there
are no phonons in a liquid, hence the phonon-mediated pairing mechanism is not likely to play a role here.
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The pairing interaction is now more complicated because we have to keep more careful track of the
spins,
Hint =

∑
k,k′;αβγδ Vαβγδ(k, k

′) c+k′,αc
+
−k′,βc−k,γck,δ. This is a generalization of the BCS pairing Hamil-

tonian. It is again assumed that Cooper pairs have zero net center of mass momentum in the ground state.

One can define a BCS-like order parameter as follows,
Fαβ(k) = ⟨c−k,αck,β⟩

=

(
⟨c−k,↑ck,↑⟩ ⟨c−k,↑ck,↓⟩
⟨c−k,↓ck,↑⟩ ⟨c−k,↓ck,↓⟩

)
giving pairing amplitude in 4 different channels since each nuclear spin can be in one of two states.

The BCS gap equation is now,
∆αβ(k) =

∑
k′,γδ Vαβγδ(k, k

′)⟨c−k′,γck′,δ⟩.
The final gap equation can be written as,(
∆↑↑(k) ∆↑↓(k)
∆↓↑(k) ∆↓↓(k)

)
= i

(
∆kI2×2 + d⃗(k) · σ⃗

)
σy, where σ⃗ is the vector of Pauli spin matrices and d⃗(k) is

a vector order parameter for the spin triplet pairing state.

The quasiparticle excitation spectrum can be written as,

Ek =

√
(ϵk − µ)2 + |d⃗(k)|2, so d⃗(k) acts like the BCS gap in determining the excitation spectrum. This

has important ramifications for persistent angular momentum.

The two most important pairing states in supefluid 3He are,
1) The Anderson-Brinkman-Morel (ABM) or A-phase. In this case, the order parameter has the form,

d⃗(k) = (
√

3
4π sin θk(cosϕk + sinϕk), 0, 0), where the angles are the traditional polar angles on the spher-

ical Fermi surface. In this case |d⃗(k)| ∼ sin θk and the gap function goes to zero at the north and
south poles of the Fermi surface (point nodes). The order parameter points in the x-direction all over
the Fermi sphere. Due to the point nodes, there are excitations out of the ground state available at
arbitrarily low temperatures, hence many properties show power-law-in-temperature behavior rather
than the exponentially-activated behavior seen in fully-gapped superfluids/superconductors. There is
no persistent angular momentum in the A-phase due to the existence of excitations at arbitrarily small
energies near the nodes. The wavefunction is made up of the Sz = ±1 components of the spin singlet
(in other words, the |↑, ↑⟩ and |↓, ↓⟩ states). The A1 phase (in the presence of a magnetic field) favors
one of these two Sz states.

Why does the A-phase of superfluid 3He not support a persistent current? For example a d-wave
superconductor has nodes in the energy gap but it still supports quantized vortices and persistent cur-
rents. Also superfluid 4He supports persistent currents. Why don’t we have this also for the A-phase?
The answer is that s-wave and d-wave superconductors, along with 4He, are all described by a scalar
complex order parameter of the form ψ = |ψ|eiϕ. As such one can derive fluxoid and circulating current
quantization conditions by demanding that the macroscopic quantum wavefunction be single valued.
This puts a quantization constraint on the phase winding number. In 3He A-phase and in p-wave
(or f-wave) superconductors the order parameter is a vector and is not simply constrained as in the
complex order parameter case. In fact, these systems are much richer and can support a variety of exotic
topological defects that are far more interesting than vortices!

2) The Balain-Werthamer (BW) or B-phase. In this case, the order parameter has the form,

d⃗(k) =
√

3
4π (sin θk cosϕk, sin θk sinϕk, cos θk). In this case the order parameter is pointed radially out-

ward on the Fermi surface, and it has a non-zero magnitude everywhere. The system is fully gapped
and shows exponentially activated properties at low temperature. The wavefunction is made up of the

Sz = 0 part of the spin-triplet wavefunction (in other words, the |↑,↓⟩+|↓,↑⟩√
2

state). This phase supports

persistent current states that are more exotic than the vortices that we have studied up to this point.

V. UNCONVENTIONAL SUPERCONDUCTORS

The p-wave pairing state in 3He leads to the question of whether or not this state is adopted by any
superconductors? One is tempted to look at metals that have strong spin-spin interactions between the
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electrons, hence they may show tendencies for ferromagnetism or anti-ferromagnetism at low temper-
atures. Somehow the material has to strike a balance between long-range magnetism and a coherent
superconducting state.

It is important to define what is meant by the phrase ’unconventional superconductor’. This gets into
the symmetry properties and group theoretical description of crystalline solids. Think of the supercon-
ducting gap as a function of location on the Fermi surface, ∆k⃗. Up to this point we have considered only
isotropic gaps: ∆k⃗ = ∆. A conventional superconductor is one in which the gap is invariant under all

symmetry operations that leave the lattice invariant, in other words ∆R̂k⃗ = ∆k⃗, where R̂ is a symmetry
operation of the lattice. A superconductor is said to be unconventional if ∆R̂k⃗ ̸= ∆k⃗ for at least one

symmetry operation R̂.

The order parameter in 3He was expanded in terms of spherical harmonics on the spherical Fermi
surface. In the case of a crystalline solid, the symmetry is discrete, and one has to identify the irreducible
representations (‘Irreps’, Γ) of the full symmetry group of the crystal. The dependence of the gap on

direction in k-space is ∆k⃗ =
∑d

Γm ηΓmfΓm(k⃗), where the functions fΓm(k⃗) are a complete set of basis
functions for the given irreducible representation of dimension d. For a conventional superconductor the
relevant Irrep is of dimension d = 1 and consists of just the identity operation: Γ =′ E′ (where E stands
for the identity element, meaning that the object is left unchanged), giving rise to a complex scalar
order parameter. In a spin-triplet superconductor one has to consider symmetries of the vector order

parameter d(k⃗), as well as the lattice. In this case one has dν(k⃗) =
∑3×d

Γm ηΓm,νfΓm,ν(k⃗). Clearly there
can be multiple components for the order parameter. More detailed discussion can be found in Annett’s
textbook and V.P. Mineev, K. Samokhin, Introduction to Unconventional Superconductivity. (Taylor &
Francis, 1999).

Experimentally, UPt3 is the clearest example of an unconventional superconductor with multiple
order parameters. As shown on the class web site, this material consistently shows two nearby super-
conducting phase transitions through the specific heat measurements as a function of temperature. This
is consistent with having multiple terms in the sum on Γm above, and the differences in Tc values is due
to a perturbation that breaks a degeneracy between these two states. As shown on the class web site,
the two transitions evolve systematically in a dc magnetic field, consistent with the existence of a vector

order parameter d⃗.

There is a class of heavy Fermion superconductors that show strong Fermi liquid mass renormalization
in the normal state, with m∗ >> me. These materials generally have un-occupied f-electron states that
give rise to strong electron-electron interactions, which may then play a role in the pairing mechanism.
These materials are also generally close to magnetic phase transitions, and thus may condense into
unconventional superconducting states.
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